Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 52(365): 2245-64, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11709575

RESUMO

The exodermis (hypodermis with Casparian bands) of plant roots represents a barrier of variable resistance to the radial flow of both water and solutes and may contribute substantially to the overall resistance. The variability is a result largely of changes in structure and anatomy of developing roots. The extent and rate at which apoplastic exodermal barriers (Casparian bands and suberin lamellae) are laid down in radial transverse and tangential walls depends on the response to conditions in a given habitat such as drought, anoxia, salinity, heavy metal or nutrient stresses. As Casparian bands and suberin lamellae form in the exodermis, the permeability to water and solutes is differentially reduced. Apoplastic barriers do not function in an all-or-none fashion. Rather, they exhibit a selectivity pattern which is useful for the plant and provides an adaptive mechanism under given circumstances. This is demonstrated for the apoplastic passage of water which appears to have an unusually high mobility, ions, the apoplastic tracer PTS, and the stress hormone ABA. Results of permeation properties of apoplastic barriers are related to their chemical composition. Depending on the growth regime (e.g. stresses applied) barriers contain aliphatic and aromatic suberin and lignin in different amounts and proportion. It is concluded that, by regulating the extent of apoplastic barriers and their chemical composition, plants can effectively regulate the uptake or loss of water and solutes. Compared with the uptake by root membranes (symplastic and transcellular pathways), which is under metabolic control, this appears to be an additional or compensatory strategy of plants to acquire water and solutes.


Assuntos
Magnoliopsida/citologia , Epiderme Vegetal/citologia , Raízes de Plantas/citologia , Ácido Abscísico/metabolismo , Adaptação Fisiológica , Transporte Biológico , Comunicação Celular , Parede Celular/química , Desastres , Hidroponia , Magnoliopsida/crescimento & desenvolvimento , Epiderme Vegetal/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Solubilidade , Sorbitol/metabolismo , Água/fisiologia
2.
J Exp Bot ; 52(362): 1835-46, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11520872

RESUMO

A pressure chamber and a root pressure probe technique have been used to measure hydraulic conductivities of rice roots (root Lp(r) per m(2) of root surface area). Young plants of two rice (Oryza sativa L.) varieties (an upland variety, cv. Azucena and a lowland variety, cv. IR64) were grown for 31-40 d in 12 h days with 500 micromol m(-2) s(-1) PAR and day/night temperatures of 27 degrees C and 22 degrees C. Root Lp(r) was measured under conditions of steady-state and transient water flow. Different growth conditions (hydroponic and aeroponic culture) did not cause visible differences in root anatomy in either variety. Values of root Lp(r) obtained from hydraulic (hydrostatic) and osmotic water flow were of the order of 10(-8) m s(-1) MPa(-1) and were similar when using the different techniques. In comparison with other herbaceous species, rice roots tended to have a higher hydraulic resistance of the roots per unit root surface area. The data suggest that the low overall hydraulic conductivity of rice roots is caused by the existence of apoplastic barriers in the outer root parts (exodermis and sclerenchymatous (fibre) tissue) and by a strongly developed endodermis rather than by the existence of aerenchyma. According to the composite transport model of the root, the ability to adapt to higher transpirational demands from the shoot should be limited for rice because there were minimal changes in root Lp(r) depending on whether hydrostatic or osmotic forces were acting. It is concluded that this may be one of the reasons why rice suffers from water shortage in the shoot even in flooded fields.


Assuntos
Oryza/fisiologia , Transporte Biológico , Parede Celular , Etanol/farmacologia , Hidroponia , Pressão Hidrostática , Modelos Biológicos , Oryza/citologia , Pressão Osmótica , Permeabilidade , Raízes de Plantas/citologia , Raízes de Plantas/fisiologia , Brotos de Planta/fisiologia , Transpiração Vegetal , Cloreto de Sódio/farmacologia , Água/metabolismo
3.
J Exp Bot ; 51(350): 1531-42, 2000 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11006304

RESUMO

The variable hydraulic conductivity of roots (Lp(r)) is explained in terms of a composite transport model. It is shown how the complex, composite anatomical structure of roots results in a composite transport of both water and solutes. In the model, the parallel apoplastic and cell-to-cell (symplastic and transcellular) pathways play an important role as well as the different tissues and structures arranged in series within the root cylinder (epidermis, exodermis, cortex, endodermis, stelar parenchyma). The roles of Casparian bands and suberin lamellae in the root's endo- and exodermis are discussed. Depending on the developmental state of these apoplastic barriers, the overall hydraulic resistance of roots is either more evenly distributed across the root cylinder (young unstressed roots) or is concentrated in certain layers (exo- and endodermis in older stressed roots). The reason for the variability of root Lp(r), is that hydraulic forces cause a dominating apoplastic flow of water around protoplasts, even in the endodermis and exodermis. In the absence of transpiration, water flow is osmotic in nature which causes a high resistance as water passes across many membranes on its passage across the root cylinder. The model allows for a high capability of roots to take up water in the presence of high rates of transpiration (high demands for water from the shoot). By contrast, the hydraulic conductance is low, when transpiration is switched off. Overall, this results in a non-linear relationship between water flow and forces (gradients of hydrostatic and osmotic pressure) which is otherwise hard to explain. The model allows for special root characteristics such as a high hydraulic conductivity (water permeability) in the presence of a low permeability of nutrient ions once taken up into the stele by active processes. Low root reflection coefficients are in line with the idea of some apoplastic bypasses for water within the root cylinder. According to the composite transport model, the switch from the hydraulic to the osmotic mode is purely physical. In the presence of heavily suberized roots, the apoplastic component of water flow may be too small. Under these conditions, a regulation of radial water flow by water channels dominates. Since water channels are under metabolic control, this component represents an 'active' element of regulation. Composite transport allows for an optimization of the water balance of the shoot in addition to the well-known phenomena involved in the regulation of water flow (gas exchange) across stomata. The model is employed to explain the responses of plants to water deficit and other stresses. During water deficit, the cohesion-tension mechanism of the ascent of sap in the xylem plays an important role. Results are summarized which prove the validity of the coehesion/tension theory. Effects of the stress hormone abscisic acid (ABA) are presented. They show that there is an apoplastic component of the flow of ABA in the root which contributes to the ABA signal in the xylem. On the other hand, (+)-cis-trans-ABA specifically affects both the cell level (water channel activity) and water flow driven by gradients in osmotic pressure at the root level which is in agreement with the composite transport model. Hydraulic water flow in the presence of gradients in hydrostatic pressure remains unchanged. The results agree with the composite transport model and resemble earlier findings of high salinity obtained for the cell (Lp) and root (Lp(r)) level. They are in line with known effects of nutrient deprivation on root Lp(r )and the diurnal rhythm of root Lp(r )recently found in roots of LOTUS.


Assuntos
Raízes de Plantas/metabolismo , Água/metabolismo , Ácido Abscísico/metabolismo , Transporte Biológico
4.
J Exp Bot ; 51(342): 61-70, 2000 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-10938796

RESUMO

It has been shown that N-, P- and S-deficiencies result in major reductions of root hydraulic conductivity (Lpr) which may lead to lowered stomatal conductance, but the relationship between the two conductance changes is not understood. In a variety of species, Lpr decreases in the early stages of NO3-, H2PO4(2-) and SO4(2-) deprivation. These effects can be reversed in 4-24 h after the deficient nutrient is re-supplied. Diurnal fluctuations of root Lpr have also been found in some species, and an example of this is given for Lotus japonicus. In nutrient-sufficient wheat plants, root Lpr is extremely sensitive to brief treatments with HgCl2; these effects are completely reversible when Hg is removed. The low values of Lpr in N- or P-deprived roots of wheat are not affected by Hg treatments. The properties of plasma membrane (PM) vesicles from wheat roots are also affected by NO3(-)-deprivation of the intact plants. The osmotic permeability of vesicles from N-deprived roots is much lower than that of roots adequately supplied with NO3-, and is insensitive to Hg treatment. In roots of L. japonicus, gene transcripts are found which have a strong homology to those encoding the PIP1 and PIP2 aquaporins of Arabidopsis. There is a very marked diurnal cycle in the abundance of mRNAs of aquaporin gene homologues in roots of L. japonicus. The maxima and minima appear to anticipate the diurnal fluctuations in Lpr by 2-4 h. The temporal similarity between the cycles of the abundance of the mRNAs and root Lpr is most striking. The aquaporin encoded by AtPIP1 is known to have its water permeation blocked by Hg binding. The lack of Hg-sensitivity in roots and PMs from N-deprived roots provides circumstantial evidence that lowered root Lpr may be due to a decrease in either the activity of water channels or their density in the PM. It is concluded that roots are capable, by means completely unknown, of monitoring the nutrient content of the solution in the root apoplasm and of initiating responses that anticipate by hours or days any metabolic disturbances caused by nutrient deficiencies. It is the incoming nutrient supply that is registered as deficient, not the plant's nutrient status. At some point, close to the initiation of these responses, changes in water channel activity may be involved, but the manner in which monitoring of nutrient stress is transduced into an hydraulic response is also unknown.


Assuntos
Aquaporinas/metabolismo , Ritmo Circadiano , Raízes de Plantas/fisiologia , Raízes de Plantas/metabolismo
5.
J Exp Bot ; 51(344): 547-57, 2000 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10938811

RESUMO

Although most studies have shown that water uptake varies along the length of a developing root, there is no consistent correlation of this pattern with root anatomy. In the present study, water movement into three zones of onion roots was measured by a series of mini-potometers. Uptake was least in the youngest zone (mean hydraulic conductivity, Lpr = 1.5 x 10(-7) +/- 0.34 x 10(-7) m MPa-1 s-1; +/- SE, n = 10 roots) in which the endodermis had developed only Casparian bands and the exodermis was immature. Uptake was significantly greater in the middle zone (Lpr = 2.4 x 10(-7) +/- 0.43 x 10(-7) m MPa-1 s-1; +/- SE, n = 10 roots) which had a mature exodermis with both Casparian bands and suberin lamellae, and continued at this level in the oldest zone in which the endodermis had also developed suberin lamellae (Lpr = 2.8 x 10(-7) +/- 0.30 x 10(-7) m MPa-1 s-1; +/- SE, n = 10 roots). Measurements of the hydraulic conductivities of individual cells (Lp) in the outer cortex using a cell pressure probe indicated that this parameter was uniform in all three zones tested (Lp = 1.3 x 10(-6) +/- 0.01 x 10(-6) m MPa-1 s-1; +/- SE, n = 60 cells). Lp of the youngest zone was lowered by mercuric chloride treatment, indicating the involvement of mercury-sensitive water channels (aquaporins). Water flow in the older two root zones measured by mini-potometers was also inhibited by mercuric chloride, despite the demonstrated impermeability of their exodermal layers to this substance. Thus, water channels in the epidermis and/or exodermis of the older regions were especially significant for water flow. The results of this and previous studies are discussed in terms of two models. The first, which describes maize root with an immature exodermis, is the 'uniform resistance model' where hydraulic resistances are evenly distributed across the root cylinder. The second, which describes the onion root with a mature exodermis, is the 'non-uniform resistance model' where resistances can be variable and are concentrated in a certain layer(s) on the radial path.


Assuntos
Cebolas/fisiologia , Raízes de Plantas/fisiologia , Água/fisiologia , Aquaporinas/fisiologia , Fenômenos Biomecânicos , Cloreto de Mercúrio/metabolismo , Cebolas/anatomia & histologia , Permeabilidade , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/metabolismo
6.
Trends Plant Sci ; 5(4): 146-7, 2000 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-10740294
7.
Planta ; 210(2): 222-31, 2000 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-10664128

RESUMO

The exodermal layers that are formed in maize roots during aeroponic culture were investigated with respect to the radial transport of cis-abscisic acid (ABA). The decrease in root hydraulic conductivity (Lp(r)) of aeroponically grown roots was stimulated 1.5-fold by ABA (500 nM), reaching Lp(r) values of roots lacking an exodermis. Similar to water, the radial flow of ABA through roots (J(ABA)) and ABA uptake into root tissue were reduced by a factor of about three as a result of the existence of an exodermis. Thus, due to the cooperation between water and solute transport the development of the ABA signal in the xylem was not affected. This resulted in unchanged reflection coeffcients for roots grown hydroponically and aeroponically. Despite the well-accepted barrier properties of exodermal layers, it is concluded that the endodermis was the more effective filter for ABA. Owing to concentration polarisation effects, ABA may accumulate in front of the endodermal layer, a process which, for both roots possessing and lacking an exodermis, would tend to increase solvent drag and hence ABA movement into the xylem sap at increased water flow (J(Vr)). This may account for the higher ABA concentrations found in the xylem at greater pressure difference.


Assuntos
Ácido Abscísico/farmacocinética , Raízes de Plantas/metabolismo , Zea mays/metabolismo , Pressão Atmosférica , Transporte Biológico , Pressão Osmótica , Raízes de Plantas/anatomia & histologia , Água/metabolismo
8.
Planta ; 210(2): 302-11, 2000 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-10664137

RESUMO

The hydraulic conductivity of roots (Lp(r)) of 6- to 8-d-old maize seedlings has been related to the chemical composition of apoplastic transport barriers in the endodermis and hypodermis (exodermis), and to the hydraulic conductivity of root cortical cells. Roots were cultivated in two different ways. When grown in aeroponic culture, they developed an exodermis (Casparian band in the hypodermal layer), which was missing in roots from hydroponics. The development of Casparian bands and suberin lamellae was observed by staining with berberin-aniline-blue and Sudan-III. The compositions of suberin and lignin were analyzed quantitatively and qualitatively after depolymerization (BF(3)/methanol-transesterification, thioacidolysis) using gas chromatography/mass spectrometry. Root Lp(r) was measured using the root pressure probe, and the hydraulic conductivity of cortical cells (Lp) using the cell pressure probe. Roots from the two cultivation methods differed significantly in (i) the Lp(r) evaluated from hydrostatic relaxations (factor of 1.5), and (ii) the amounts of lignin and aliphatic suberin in the hypodermal layer of the apical root zone. Aliphatic suberin is thought to be the major reason for the hydrophobic properties of apoplastic barriers and for their relatively low permeability to water. No differences were found in the amounts of suberin in the hypodermal layers of basal root zones and in the endodermal layer. In order to verify that changes in root Lp(r) were not caused by changes in hydraulic conductivity at the membrane level, cell Lp was measured as well. No differences were found in the Lp values of cells from roots cultivated by the two different methods. It was concluded that changes in the hydraulic conductivity of the apoplastic rather than of the cell-to-cell path were causing the observed changes in root Lp(r).


Assuntos
Raízes de Plantas/metabolismo , Zea mays/metabolismo , Transporte Biológico , Parede Celular/química , Pressão Hidrostática , Lignina/análise , Lipídeos , Lipídeos de Membrana/análise , Pressão Osmótica , Permeabilidade , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/química , Zea mays/química
9.
J Exp Bot ; 51(353): 2053-66, 2000 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11141179

RESUMO

A mathematical model is presented that describes permeation of hydrogen peroxide across a cell membrane and the implications of solute decomposition by catalase inside the cell. The model was checked and analysed by means of a numerical calculation that raised predictions for measured osmotic pressure relaxation curves. Predictions were tested with isolated internodal cells of CHARA: corallina, a model system for investigating interactions between water and solute transport in plant cells. Series of biphasic osmotic pressure relaxation curves with different concentrations of H(2)O(2) of up to 350 mol m(-3) are presented. A detailed description of determination of permeability (P(s)) and reflection coefficients (sigma(s)) for H(2)O(2) is given in the presence of the chemical reaction in the cell. Mean values were P(s)=(3.6+/-1.0) 10(-6) m s(-1) and sigma(s)=(0.33+/-0.12) (+/-SD, N=6 cells). Besides transport properties, coefficients for the catalase reaction following a Michaelis-Menten type of kinetics were determined. Mean values of the Michaelis constant (k(M)) and the maximum rate of decompositon (v(max)) were k(M)=(85+/-55) mol m(-3) and v(max)=(49+/-40) nmol (s cell)(-1), respectively. The absolute values of P:(s) and sigma(s) of H(2)O(2) indicated that hydrogen peroxide, a molecule with chemical properties close to that of water, uses water channels (aquaporins) to cross the cell membrane rapidly. When water channels were inhibited with the blocker mercuric chloride (HgCl(2)), the permeabilities of both water and H(2)O(2) were substantially reduced. In fact, for the latter, it was not measurable. It is suggested that some of the water channels in CHARA: (and, perhaps, in other species) serve as 'peroxoporins' rather than as 'aquaporins'.


Assuntos
Aquaporinas/metabolismo , Peróxido de Hidrogênio/metabolismo , Transporte Biológico , Modelos Biológicos , Plantas/metabolismo
10.
Planta ; 211(6): 874-82, 2000 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11144273

RESUMO

Using root- and cell-pressure probes, the effects of the stress hormone abscisic acid (ABA) on the water-transport properties of maize roots (Zea mays L.) were examined in order to work out dose and time responses for root hydraulic conductivity. Abscisic acid applied at concentrations of 100-1,000 nM increased the hydraulic conductivity of excised maize roots both at the organ (root Lp(r): factor of 3 4) and the root cell level (cell Lp: factor of 7-27). Effects on the root cortical cells were more pronounced than at the organ level. From the results it was concluded that ABA acts at the plasmalemma, presumably by an interaction with water channels. Abscisic acid therefore facilitated the cell-to-cell component of transport of water across the root cylinder. Effects on cell Lp were transient and highly specific for the undissociated (+)-cis-trans-ABA. The stress hormone ABA facilitates water uptake into roots as soils start drying, especially under non-transpiring conditions, when the apoplastic path of water transport is largely excluded.


Assuntos
Ácido Abscísico/metabolismo , Zea mays/metabolismo , Ácido Abscísico/farmacologia , Raízes de Plantas/metabolismo , Pressão , Transdução de Sinais , Zea mays/efeitos dos fármacos
11.
Planta ; 210(1): 50-60, 1999 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-10592032

RESUMO

The hydraulic conductivity of excised roots (Lp(r)) of the legume Lotus japonicus (Regel) K. Larsen grown in mist (aeroponic) and sand cultures, was found to vary over a 5-fold range during a day/night cycle. This behaviour was seen when Lp(r) was measured in roots exuding, either under root pressure (osmotic driving force), or under an applied hydrostatic pressure of 0.4 MPa which produced a rate of water flow similar to that in a transpiring plant. A similar daily pattern of variation was seen in plants grown in natural daylight or in controlled-environment rooms, in plants transpiring at ambient rates or at greatly reduced rates, and in plants grown in either aeroponic or sand culture. When detached root systems were connected to a root pressure probe, a marked diurnal variation was seen in the root pressure generated. After excision, this circadian rhythm continued for some days. The hydraulic conductivity of the plasma membrane of individual root cells was measured during the diurnal cycle using a cell pressure probe. Measurements were made on the first four cell layers of the cortex, but no evidence of any diurnal fluctuation could be found. It was concluded that the conductance of membranes of endodermal and stelar cells may be responsible for the observed diurnal rhythm in root Lp(r). When mRNAs from roots were probed with cDNA from the Arabidopsis aquaporin AthPIP1a gene, an abundant transcript was found to vary in abundance diurnally under high-stringency conditions. The pattern of fluctuations resembled closely the diurnal pattern of variation in root Lp(r). The plasma membranes of root cells were found to contain an abundant hydrophobic protein with a molecular weight of about 31 kDa which cross-reacted strongly to an antibody raised against the evolutionarily conserved N-terminal amino acid sequence of AthPIP1a.

12.
Plant Physiol ; 121(4): 1191-206, 1999 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-10594106

RESUMO

The water relations of maize (Zea mays L. cv Helix) were documented in terms of hydraulic architecture and xylem pressure. A high-pressure flowmeter was used to characterize the hydraulic resistances of the root, stalk, and leaves. Xylem pressure measurements were made with a Scholander-Hammel pressure bomb and with a cell pressure probe. Evaporation rates were measured by gas exchange and by gravimetric measurements. Xylem pressure was altered by changing the light intensity, by controlling irrigation, or by gas pressure applied to the soil mass (using a root pressure bomb). Xylem pressure measured by the cell pressure probe and by the pressure bomb agreed over the entire measured range of 0 to -0.7 MPa. Experiments were consistent with the cohesion-tension theory. Xylem pressure changed rapidly and reversibly with changes in light intensity and root-bomb pressure. Increasing the root-bomb pressure increased the evaporation rate slightly when xylem pressure was negative and increased water flow rate through the shoots dramatically when xylem pressure was positive and guttation was observed. The hydraulic architecture model could predict all observed changes in water flow rate and xylem. We measured the cavitation threshold for oil- and water-filled pressure probes and provide some suggestions for improvement.

13.
Trends Plant Sci ; 4(9): 372-375, 1999 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-10462771

RESUMO

The cohesion-tension theory of the ascent of sap in plants is fundamental to the understanding of water movement in plants. According to the theory, water is pulled upwards by high tensions (low negative pressures) created in the xylem vessels and tracheids of higher plants by the evaporation of water vapour from leaves. However, much lower tensions (less negative pressures) have been found from direct measurements using a pressure probe. These do not appear to be compatible with the cohesion-tension theory. As a consequence, the validity of the cohesion-tension theory has been questioned and alternative mechanisms for sap ascent have been proposed. Recent experiments show that the conclusions drawn from the pressure probe work were premature. New direct measurements of xylem pressure support the cohesion-tension theory and the previous indirect measurements of xylem pressure.

14.
Plant Physiol ; 103(2): 335-349, 1993 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12231941

RESUMO

The effects of puncturing the endodermis of young maize roots (Zea mays L.) on their transport properties were measured using the root pressure probe. Small holes with a diameter of 18 to 60 [mu]m were created 70 to 90 mm from the tips of the roots by pushing fine glass tubes radially into them. Such wounds injured about 10-2 to 10-3% of the total surface area of the endodermis, which, in these hydroponically grown roots, had developed a Casparian band but no suberin lamellae. The small injury to the endodermis caused the original root pressure, which varied from 0.08 to 0.19 MPa, to decrease rapidly (half-time = 10-100 s) and substantially to a new steady-state value between 0.02 and 0.07 MPa. The radial hydraulic conductivity (Lpr) of control (uninjured) roots determined using hydrostatic pressure gradients as driving forces was larger by a factor of 10 than that determined using osmotic gradients (averages: Lpr [hydrostatic] = 2.7 x 10-7 m s-1 MPa-1; Lpr [osmotic] = 2.2 x 10-8 m s-1 MPa-1; osmotic solute: NaCl). Puncturing the endodermis did not result in measurable increases in hydraulic conductivities measured by either method. Thus, the endodermis was not rate-limiting root Lpr: apparently the hydraulic resistance of roots was more evenly distributed over the entire root tissue. However, puncturing the endodermis did substantially change the reflection ([sigma]sr) and permeability (Psr) coefficients of roots for NaCl, indicating that the endodermis represented a considerable barrier to the flow of nutrient ions. Values of [sigma]sr decreased from 0.64 to 0.41 (average) and Psr increased by a factor of 2.6, i.e. from 3.8 x 10-9 to 10.1 x 10.-9 m s-1(average). The roots recovered from puncturing after a time and regained root pressure. Measurable increases in root pressure became apparent as soon as 0.5 to 1 h after puncturing, and original or higher root pressures were attained 1.5 to 20 h after injury. However, after recovery roots often did not maintain a stable root pressure, and no further osmotic experiments could be performed with them. The Casparian band of the endodermis is discontinuous at the root tip, where the endodermis has not yet matured, and at sites of developing lateral roots. Measurements of the cross-sectional area of the apoplasmic bypass at the root tip yielded an area of 0.031% of the total surface area of the endodermis. An additional 0.049% was associated with lateral root primordia. These areas are larger than the artificial bypasses created by wounding in this study and may provide pathways for a "natural bypass flow" of water and solutes across the intact root. If there were such a pathway, either in these areas or across the Casparian band itself, roots would have to be treated as a system composed of two parallel pathways (a cell-to-cell and an apoplasmic path). It is demonstrated that this "composite transport model of the root" allows integration of several transport properties of roots that are otherwise difficult to understand, namely (a) the differences between osmotic and hydrostatic water flow, (b) the dependence of root hydraulic resistance on the driving force or water flow across the root, and (c) low reflection coefficients of roots.

15.
Plant Physiol ; 101(4): 1305-1315, 1993 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12231786

RESUMO

The hydraulic architecture of developing onion (Allium cepa L. cv Calypso) roots grown hydroponically was determined by measuring axial and radial hydraulic conductivities (equal to inverse of specific hydraulic resistances). In the roots, Casparian bands and suberin lamellae develop in the endodermis and exodermis (equal to hypodermis). Using the root pressure probe, changes of hydraulic conductivities along the developing roots were analyzed with high resolution. Axial hydraulic conductivity (Lx) was also calculated from stained cross-sections according to Poiseuille's law. Near the base and the tip of the roots, measured and calculated Lx values were similar. However, at distances between 200 and 300 mm from the apex, measured values of Lx were smaller by more than 1 order of magnitude than those calculated, probably because of remaining cross walls between xylem vessel members. During development of root xylem, Lx increased by 3 orders of magnitude. In the apical 30 mm (tip region), axial resistance limited water transport, whereas in basal parts radial resistances (low radial hydraulic conductivity, Lpr) controlled the uptake. Because of the high axial hydraulic resistance in the tip region, this zone appeared to be "hydraulically isolated" from the rest of the root. Changes of the Lpr of the roots were determined by measuring the hydraulic conductance of roots of different length and referring these data to unit surface area. At distances between 30 and 150 mm from the root tip, Lpr was fairly constant (1.4 x 10-7 m s-1 MPa-1). In more basal root zones, Lpr was considerably smaller and varied between roots. The low contribution of basal zones to the overall water uptake indicated an influence of the exodermal Casparian bands and/or suberin lamellae in the endodermis or exodermis, which develop at distances larger than 50 to 60 mm from the root tip.

16.
Plant Physiol ; 99(3): 886-94, 1992 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16669016

RESUMO

The effect of salinity and calcium levels on water flows and on hydraulic parameters of individual cortical cells of excised roots of young maize (Zea mays L. cv Halamish) plants have been measured using the cell pressure probe. Maize seedlings were grown in one-third strength Hoagland solution modified by additions of NaCl and/or extra calcium so that the seedlings received one of four treatments: control; +100 millimolar NaCl; +10 millimolar CaCl(2); +100 millimolar NaCl + 10 millimolar CaCl(2). From the hydrostatic and osmotic relaxations of turgor, the hydraulic conductivity (Lp) and the reflection coefficient (sigma(s)) of cortical cells of different root layers were determined. Mean Lp values in the different layers (first to third, fourth to sixth, seventh to ninth) of the four different treatments ranged from 11.8 to 14.5 (Control), 2.5 to 3.8 (+NaCl), 6.9 to 8.7 (+CaCl(2)), and 6.6 to 7.2 . 10(-7) meter per second per megapascal (+NaCl + CaCl(2)). These results indicate that salinization of the growth media at regular calcium levels (0.5 millimolar) decreased Lp significantly (three to six times). The addition of extra calcium (10 millimolar) to the salinized media produced compensating effects. Mean cell sigma(s) values of NaCl ranged from 1.08 to 1.16, 1.15 to 1.22, 0.94 to 1.00, and 1.32 to 1.46 in different root cell layers of the four different treatments, respectively. Some of these sigma(s) values were probably overestimated due to an underestimation of the elastic modulus of cells, sigma(s) values of close to unity were in line with the fact that root cell membranes were practically not permeable to NaCl. However, the root cylinder exhibited some permeability to NaCl as was demonstrated by the root pressure probe measurements that resulted in sigma(sr) of less than unity. Compared with the controls, salinity and calcium increased the root cell diameter. Salinized seedlings grown at regular calcium levels resulted in shorter cell length compared with control (by a factor of 2). The results demonstrate that NaCl has adverse effects on water transport parameters of root cells. Extra calcium could, in part, compensate for these effects. The data suggest a considerable apoplasmic water flow in the root cortex. However, the cell-to-cell path also contributed to the overall water transport in maize roots and appeared to be responsible for the decrease in root hydraulic conductivity reported earlier (Azaizeh H, Steudle E [1991] Plant Physiol 97: 1136-1145). Accordingly, the effect of high salinity on the cell Lp was much larger than that on root Lp(r).

17.
Plant Physiol ; 98(3): 840-52, 1992 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16668755

RESUMO

To evaluate the possible role of solute transport during extension growth, water and solute relations of cortex cells of the growing hypocotyl of 5-day-old castor bean seedlings (Ricinus communis L.) were determined using the cell pressure probe. Because the osmotic pressure of individual cells (pi(i)) was also determined, the water potential (psi) could be evaluated as well at the cell level. In the rapidly growing part of the hypocotyl of well-watered plants, turgor increased from 0.37 megapascal in the outer to 1.04 megapascal in the inner cortex. Thus, there were steep gradients of turgor of up to 0.7 megapascal (7 bar) over a distance of only 470 micrometer. In the more basal and rather mature region, gradients were less pronounced. Because cell turgor approximately pi(i) and psi approximately 0 across the cortex, there were also no gradients of psi across the tissue. Gradients of cell turgor and pi(i) increased when the endosperm was removed from the cotyledons, allowing for a better water supply. They were reduced by increasing the osmotic pressure of the root medium or by cutting off the cotyledons or the entire hook. If the root was excised to interrupt the main source for water, effects became more pronounced. Gradients completely disappeared and turgor fell to 0.3 megapascal in all layers within 1.5 hours. When excised hypocotyls were infiltrated with 0.5 millimolar CaCl(2) solution under pressure via the cut surface, gradients in turgor could be restored or even increased. When turgor was measured in individual cortical cells while pressurizing the xylem, rapid responses were recorded and changes of turgor exceeded that of applied pressure. Gradients could also be reestablished in excised hypocotyls by abrading the cuticle, allowing for a water supply from the wet environment. The steep gradients of turgor and osmotic pressure suggest a considerable supply of osmotic solutes from the phloem to the growing tissue. On the basis of a new theoretical approach, the data are discussed in terms of a coupling between water and solute flows and of a compartmentation of water and solutes, both of which affect water status and extension growth.

18.
Plant Physiol ; 97(3): 1136-45, 1991 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16668500

RESUMO

The root pressure probe was used to determine the effects of salinity on the hydraulic properties of primary roots of maize (Zea mays L. cv Halamish). Maize seedlings were grown in nutrient solutions modified by additions of NaCl and/or extra CaCl(2) so that the seedlings received one of four treatments: Control, plus 100 millimolar NaCl, plus 10 millimolar CaCl(2), plus 100 millimolar NaCl plus 10 millimolar CaCl(2). The hydraulic conductivities (Lp(r)) of primary root segments were determined by applying gradients of hydrostatic and osmotic pressure across the root cylinder. Exosmotic hydrostatic Lp(r) for the different treatments were 2.8, 1.7, 2.8, and 3.4.10(-7) meters per second per megapascals and the endosmotic hydrostatic Lp(r) were 2.4, 1.5, 2.7, and 2.3.10(-7) meters per second per megapascals, respectively. Exosmotic Lp(r) of the osmotic experiments were 0.55, 0.38, 0.68, and 0.60.10(-7) meters per second per megapascals and the endosmotic Lp(r) were 0.53, 0.21, 0.56, and 0.54.10(-7) meters per second per megapascals, respectively. The osmotic Lp(r) was significantly smaller (4-5 times) than hydrostatic Lp(r). However, both hydrostatic and osmotic Lp(r) experiments showed that salinization of the growth media at regular (0.5 millimolar) calcium levels decreased the Lp(r) significantly (30-60%). Addition of extra calcium (10 millimolar) to the salinized media caused ameliorative effects on Lp(r). The low Lp(r) values may partially explain the reduction in root growth rates caused by salinity. High calcium levels in the salinized media increased the relative availability of water needed for growth. The mean reflection coefficients of the roots using NaCl were between 0.64 and 0.73 and were not significantly different for the different treatments. The mean values of the root permeability coefficients to NaCl of the different treatments were between 2.2 and 3.5.10(-9) meters per second and were significantly different only in one of four treatments. Cutting the roots successively from the tip and measuring the changes in the hydraulic resistance of the root as well as staining of root cross-sections obtained at various distances from the root tip revealed that salinized roots had mature xylem elements closer to the tip (5-10 millimeters) compared with the controls (30 millimeters). Our results demonstrate that salinity has adverse effects on water transport and that extra calcium can, in part, compensate for these effects.

19.
Plant Physiol ; 95(1): 305-15, 1991 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16667970

RESUMO

A double pressure probe technique was used to measure simultaneously water flows and hydraulic parameters of individual cells and of excised roots of young seedlings of maize (Zea mays L.) in osmotic experiments. By following initial flows of water at the cell and root level and by estimating the profiles of driving forces (water potentials) across the root, the hydraulic conductivity of individual cell layers was evaluated. Since the hydraulic conductivity of the cell-to-cell path was determined separately, the hydraulic conductivity of the cell wall material could be evaluated as well (Lp(cw) = 0.3 to 6.10(-9) per meter per second per megapascal). Although, for radial water flow across the cortex and rhizodermis, the apoplasmic path was predominant, the contribution of the hydraulic conductance of the cell-to-cell path to the overall conductance increased significantly from the first layer of the cortex toward the inner layers from 2% to 23%. This change was mainly due to an increase of the hydraulic conductivity of the cell membranes which was Lp = 1.9.10(-7) per meter per second per megapascal in the first layer and Lp = 14 to 9.10(-7) per meter per second per megapascal in the inner layers of the cortex. The hydraulic conductivity of entire roots depended on whether hydrostatic or osmotic forces were used to induce water flows. Hydrostatic Lp(r) was 1.2 to 2.3.10(-7) per meter per second per megapascal and osmotic Lp(r) = 1.6 to 2.8.10(-8) per meter per second per megapascal. The apparent reflection coefficients of root cells (sigma(s)) of nonpermeating solutes (KCI, PEG 6000) decreased from values close to unity in the rhizodermis to about 0.7 to 0.8 in the cortex. In all cases, however, sigma(s) was significantly larger than the reflection coefficient of entire roots (sigma(sr)). For KCI and PEG 6000, sigma(sr) was 0.53 and 0.64, respectively. The results are discussed in terms of a composite membrane model of the root.

20.
Planta ; 184(3): 389-96, 1991 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24194157

RESUMO

Transport coefficients of excised maize (Zea mays L.) roots such as the radial hydraulic conductivity (Lpr), the permeability coefficient (Psr), and reflection coefficient (σsr), were determined with the aid of the root pressure probe using osmotic and hydrostatic pressure differences as driving forces. Hydrostatic hydraulic conductivity (Lprh) was about an order of magnitude larger than the osmotic hydraulic conductivity (Lpro). Provided that the air of the cortical intercellular spaces was replaced by water to avoid air-seeding, it was possible to measure negative root pressures (Pr) of the excised roots and to determine Lpr, Psr, and σsr at Pr<0, i.e. at pressures below vacuum. In osmotic experiments, Lpro of the roots as well as Pinsr and σsr were measured at positive and negative root pressures using ethanol and NaNO3 as permeating solutes. Negative root pressures were obtained by adding non-diffusable solutes (mannitol, KNO3) to the medium. Transport parameters did not change in the range of root pressures between -0.2 to + 0.3 MPa (-2 to +3 bar). Thus, data of transport coefficients (Lpro, Psr, σsr) obtained at positive or atmospheric pressure can be also used in the range of negative Pr. Root pressures were also measured on whole plants by attaching the root pressure probe to the excised end of a root. At zero transpiration, Pr values were in the range of +5 to 35 kPa (= +0.05 to 0.35 bar; reference: atmospheric pressure). When transpiration was induced, Pr dropped immediately with a response time of less than 1 min. However, it was not possible to measure negative pressures in these experiments because the air in the intercellular spaces caused cavitations. Responses of root pressures to changes in transpiration were completely reversible.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...